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Abstract: The forest biomass is considered a major component affecting biosphere-atmosphere 

interactions and global climate change. Conventional ground-based measurements – a labor-intensive process – 
has proved insufficient to adequately represent the spatial extent of biomass. Therefore, remote sensing 
techniques are increasingly used for quantifying aboveground biomass and carbon stock. In this study, a model 
ND56 Landsat 8 OLI (original: ND45 Landsat ETM +) adapted to the Bulgarian natural conditions was tested in an 
attempt to quantify the spatial variability of forest carbon stock on a national scale. It was found that in the 
Bulgarian forests the aboveground biomass varies between 11.6 and 605.5 m3 ha-1, and the carbon stock 
between 2.7 and 201.3 t C ha-1. The total amount of carbon is 336.8 million tons for a total of 35,317 km2 of forest 
area. Most of the carbon (71.5%) is stored in deciduous forests, while the remaining 16.8% and 11.7% of carbon 
are stored in mixed and coniferous forests, respectively.  
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Резюме: Горската биомаса се счита за основен компонент, влияещ върху взаимодействието 

биосфера-атмосфера и глобалното изменение на климата. Конвенционалните наземни измервания 
(трудоемък процес), се доказаха недостатъчни, за да се представи адекватно пространствения 
обхват на биомасата. Следователно, техниките за дистанционно наблюдение все по-често се 
използват за количествено определяне на надземната биомаса и запасите от въглерод. В това 
изследване е тестван модел ND56 Landsat 8 OLI (оригинал: ND45 Landsat ETM+), адаптиран към 
българските природни условия, в опит да се определи количествено пространствената 
променливост на горския въглероден запас в национален мащаб. Беше установено, че в българските 
гори надземната биомаса варира между 11.6 и 605.5 m3 ha-1, а въглеродният запас между 2.7 и  
201.3 t C ha-1. Общото количество въглерод е 336.8 милиона тона за общо 35 317 км2 горска площ. По -
голямата част от въглерода (71.5%) е акумулирана в широколистни гори, докато останалите 16.8% и 
11.7% въглерод се съхраняват съответно в смесени и иглолистни гори. 

 
 

Introduction 
 

Being “the chief among the greenhouse gases” in the Earth’s atmosphere the carbon dioxide 
(CO2) plays an important role in the global climate changes [25]. According to IPPC [20] the 
concentration of CO2 in the atmosphere continues to increase every year. Bulgaria ratified the Kyoto 
Protocol in July 2002, which came into force on February 16, 2005. Since then efforts have been 
made to minimize the impact on the climate by reducing greenhouse gas emissions, including carbon 
dioxide. However, Bulgaria continues to be among the countries with the most polluted air in Europe. 
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According to Eurostat in 2017 the carbon dioxide emissions in the EU increased by 1.8%, compared 
with the previous year, with Bulgaria among the top 3 pollutants in EU [28]. A major carbon sink 
among the terrestrial ecosystems, with considerable proportion of aboveground biomass (AGB), are 
forests. Therefore, they play a crucial role in the global carbon cycle by sequestering a substantial 
amount of carbon dioxide from the atmosphere [25]. According to [3] forests store approximately 45% 
of the terrestrial carbon, contribute approximately 50% of the terrestrial net primary production, and 
take up approximately 33% of the anthropogenic carbon emission. Deforestation is the second largest 
source of atmospheric greenhouse gases from terrestrial ecosystems, beside fossil fuel combustion, 
estimated to account for about 20% of the global anthropogenic CO2 emissions [24]. While average 
biomass values have been used in most calculations of carbon flux between terrestrial ecosystems 
and the atmosphere, knowledge of the spatial distribution of the biomass is important for better 
understanding the carbon cycle. Although direct measurements of biomass on the ground are still the 
most accurate method for biomass estimation, they are however implemented on very small areas and 
have limitations, among which expensiveness, labor- and time consumption [10]. For that reason, 
during the last two decades remote sensing techniques and GIS-based multilayer modelling have 
become promising resources to advance the accuracy in carbon stock (C-stock) estimates, especially 
in remote areas with difficult access. Satellite data allows the carbon stock to be simultaneously 
quantified and mapped on different spatial scales and the changes in carbon pools to be monitored in 
different time intervals – advantages that the traditional techniques based on the field measurement 
cannot provide. Given the good correlation between AGB and remotely sensed data, regression 
analysis is the most commonly used method for developing suitable models for AGB and C-stock 
estimations. Coarse spatial-resolution data greater than 100 m pixel size, including NOAA’s AVHRR 
and MODIS, have been used for AGB and C-stock mapping at national, continental, and global scales 
[2,6,7,17]. Fine spatial-resolution data with pixel size less than 10 m, such as IKONOS or QuickBird, 
are usually used for applications at local scale on very small areas [22]. Whilst, the Landsat time-
series are the most frequently used medium spatial-resolution data (from 10 to 100 m pixel size) for 
many applications at local, regional or national scales, including forest AGB and C-stock [1,5,8,19,23]. 
Against the backdrop of increasing use of the remote sensing techniques, their application on the 
territory of Bulgaria for spatially explicit C-stock quantification is still scarce.  

This work aims to further explore the potential of remote sensing technologies in the study of 
global carbon balance, and to encourage their uses in national forest management. To achieve this 
purpose, ND56 Landsat 8 OLI model – the original ND45 Landsat ETM+ model by Goodenough et al. 
[9] – was applied to quantify forest carbon stocks nationally. The ND45 model, originally developed for 
Canadian boreal forest ecosystems, was chosen because of the several advantages it has. Firstly, the 
similarity in spectral and spatial resolutions that the two sensors have. Secondly, the Forest 
Reflectance and Transmittance, which incorporates four other predictive models, has been used for 
verification of the results of the ND45 model instead of ground-based biomass measurements, thus 
increasing the transferability of the model. And finally, Partial Least Squares (PLS) regression 
algorithm has been applied to achieve the best approximation of R2=0.92, avoiding the multi-co-
linearity between spectral bands [9].  

 
Data and methods 
 

Site description 
The Republic of Bulgaria is situated on the eastern part of the Balkan Peninsula, covering 

23% of the peninsula’s territory. The country, with an area of 110,993.6 km², extends between 41°14' 
and 44°13' in latitude, and between 22°21' and 28°36' in longitude. The altitude varies from 0 to 2925 
m. The climate is temperate, with Mediterranean influence in the southern part. The average annual 
temperature fluctuates between 10 and 14°C and the vegetation period is about 7 months. Average 
annual precipitation amounts to approximately 650 mm. According to [30], the forests consist of 69.3% 
deciduous and 28.7% coniferous species.  

 
Data processing  
Images from satellites Landsat 8 were used to quantify C-stock in Bulgarian forest 

ecosystems. Landsat 8 OLI/TIRS C1 Level-1 data were downloaded on 23 and 24 July 2018 from 
Landsat 8 collection, freely available through [29]. Nine geometrically correct images, covering the 
whole territory of Bulgaria, were selected, following two main searching criteria: vegetation period from 
May to October and cloudiness less than 10%. Satellite data with the best meteorological conditions 
were found for the years 2015, 2016 and 2017. As a first step the Level 1 data, saved as 16-bit integer 
values (DN), is converted to TOA reflectance following equations (1) and (2) [27]. 
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(1)  AQM cal  *'    

                                                                  
where: ρλ′ is TOA Planetary Spectral Reflectance, without correction for solar angle; Mρ is the 
reflectance multiplicative scaling factor for the band (from the metadata); Aρ is reflectance additive 
scaling factor for the band (from the metadata) and Qcal is the L1 pixel value in DN. Then the real TOA 
Reflectance was calculated, applying correction for the solar elevation angle: 

 

(2)    sin/'       

                                                               

where: ρλ is the true TOA planetary spectral reflectance and θ is the solar elevation angle (from the 
metadata). 

 
Quantification and mapping of forest AGB and carbon stock 
In this study, the original model ND45 (Landsat 7 ETM+), representing a regression model 

based on the relationships between forest biomass and ND45 (Normalized Difference 45) vegetation 
index, is transformed to ND56 (Landsat 8 OLI) in order to quantify forest AGB and C-stock on the 
territory of Bulgaria, following the procedure of [9]. Firstly, the ND56 (Landsat 8 OLI) vegetation index 
was calculated for the all 9 satellite scenes using equation (3): 

 

(3)      12865/65*12856 8  bbbbND Landsat     

                                                                 
where b5 is the NIR TOA spectral reflectance, and b6 is the SWIR TOA spectral reflectance. 

Landsat 8 OLI Band-5 (0.851–0.879 µm) and Band-6 (1.566–1.651 µm) were used here, 
instead of original Landsat ETM+ Band-4 (0.772–0.898 µm) and Band-5 (1.547–1.749 µm). A study, 
investigating the difference between the Landsat 7 ETM+ and Landsat 8 OLI sensors by pair 
comparative analysis of several vegetation indices [12], demonstrated that the difference is very slight, 
especially for indices using NIR and SWIR-1 spectral bands, which show mean difference and 
standard deviation of less than ±0.05. Once the index was calculated, an 11x11 average filter was 
applied for all satellite scenes to mitigate extreme values caused by atmospheric or environmental 
disturbance, as suggested in the original model. The filter is expected to strengthen the correlation 
between AGB and ND56 vegetation index. Then a mosaic process was carried out, averaging the 
values in the overlapping areas. 

As a second step, the forest ecosystems were delineated. To avoid image classification 
procedures, CLC2012 CIS-data set [30] was used for obtaining forest areas and forest types. Forest 
land covering classes 311, 312 and 313 from level 3 of the CLC2012 was selected for deciduous, 
coniferous and mixed forest types, respectively.  

As a third step, forest aboveground biomass was calculated only over forested areas using the 
regression model of [9], adapted to ND56 (Landsat 8) vegetation index: 

 

(4) 856*5041.458.478 LandsatNDAGB        

                                                               
where AGB is aboveground biomass volume (m3ha-1) and ND56 is the vegetation index. With the 
function proposed by [9], the forest C-stock (kg C ha-1) was calculated for each forest type as follows: 
 

(5) 

5.0*5.562*

5.0*460*

5.0*665*

313

312

311

AGBCstock

AGBCstock

AGBCstock







     

                                                                
The wood density value (665 kg m-3) for deciduous forests was calculated as an average 

between basic densities of oven dry wood [11] for Fagus sylvatica L. and Quercus L., which are 
dominant tree species for Bulgarian deciduous forests. The wood density value used for coniferous 
forests (460 kg m-3) was calculated as an average between basic densities of oven dry wood for 
species Pinus sylvestris L., Picea abies L. and Abies alba Mill., dominant for Bulgarian coniferous 
forests. The value of 562.5 kg m-3 used to calculate the carbon stock in mixed forest is an average 
value. Biomass to carbon conversion factor 0.5 was applied for all forest types.  
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Results and discussion 
 

The results obtained in this study were compared to biomass measurements and C-stock 
mapping of other European countries with species diversity and natural conditions close to the 
Bulgarian ones. For easier comparison, the C-stock values obtained in kilograms per hectare were 
transformed in most commonly used units: tons (mega grams) of carbon per hectare (e.g. t C ha−1 or 
Mg C ha−1). Although the modelled AGB volume fluctuates widely (Fig. 1), in most forest ecosystems it 
varies from 160 to 400 m3 ha–1 (approx. from 100 to 260 t ha–1). These values are similar to the 
growing stock of the Bulgarian forests, estimated by [7] in the EU-wide map of growing stock, based 
on remotely sensed data with a coarser spatial resolution.  

 

 
 

Fig. 1. Aboveground biomass volume of forest ecosystems in Bulgaria (m3 ha-1) 

 
The values of woody biomass derived in this study are also close to the value of 146 t ha–1, for 

AGB in mixed broad-leaved forests in the Italian Pre-Alps, estimated using low density LiDAR data 
[16]. Fassnacht et al. [4] estimated a mean of 167 t ha–1 biomass value in Karlsruhe, Germany, using 
remote sensing (LiDAR) data and ground validating data for 297 inventory plots, obtained by applying 
species-specific allometric models. 

Based on the ND56 model, the total C-stock in Bulgarian forest ecosystems amounts to 336.8 
million tons for 35 317 km2 forest area (Table 1). Pechanec et al. [18] obtained similar result (206.2 
million tons for total area of 24 517 km2) for forest ecosystems of the Czech Republic, using the same 
method of quantification verified by expert assessment and inventory data. The major part of the total 
carbon in Bulgarian forest ecosystems is stored in deciduous forests (71.5%). About 16.8% is retained 
in mixed forests and only 11.7% in coniferous forests. 

 
Table 1. Carbon stock of aboveground biomass in Bulgarian forest ecosystems 
 

Forest type Forested area [ha] Total carbon 
stock [t] 

Carbon stock density [t C ha-1] 

Minimum Maximum Mean 

Deciduous forests 2 337 881.5 240 877 800 16.5 201.3 104.9 
Coniferous forests 542 771.6 39 146 490 2.7 104.5 72.6 
Mixed forests 651 057.9 56 740 950 12.9 127.3 87.5 

Forest – total 3 531 711.0 336 765 240 2.7 201.3 96.7 

 
The carbon stored in Bulgarian forests ranges between 2.7 and 201.3 t C ha–1, depending on 

the forest type (Fig. 2). Comparing the results of Tab.2, it can be seen that [26] obtained similar values 
of mean carbon density for productive forests in Belgium, based on “biomass expansion factors s.l.” 
(BEFs s.l.): 85.2 t C ha–1 for forests in Flanders, 105.9 t C ha–1 for forests in Wallonia and  
101.0 t C ha–1 on average for all Belgian productive forests. Although the results derived in this work 
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are comparable to the results of other studies, obtained by different methods, the results’ reliability is a 
complex issue and the accuracy strongly depends on the techniques used. On one hand, the 
uncertainty of remote sensing measurements is related to the spatial resolution of the data, since a 
single pixel contains a mixture of information, as well as, to some technical limitations in spectral and 
radiometric resolutions of the different satellite sensors [14,17,22]. On the other hand, the ground-
based measurements, on which the regression models are based, are also prone to errors [5]. 
Therefore, the accuracy of the estimates may vary significantly, depending on the allometric equation 
applied, especially in deciduous ecosystems. Seijo et al. [21] reported “a huge variability of results in 
terms of aboveground carbon storage” of the chestnut forests of Central Spain, applying five different 
allometric equations: from minimum of 81 to 102 Mg C ha-1 to maximum of 286 to 583 Mg C ha-1. 
Another aspect that concerns the accuracy of the estimates is transferability of the models between 
regions. There are factors, such as canopy structure and tree species composition, that can affect 
AGB estimation results. Many researchers argue that it is difficult to directly transfer a single model to 
different study areas, but it is generally possible, if the similarity in biophysical parameters and the 
applicable scale of the original model are taken into account [5,14].  

 

 
Fig. 3. Carbon stock in aboveground forest biomass (t C ha-1) 

 
Fig. 3. Carbon content in different forest types:  

a) in deciduous forests; b) in coniferous forests; c) in mixed forests 

 
In addition, a small average filter, such as the most often used 3x3 pixels window size [1,6], is 

not sufficient to establish high correlation between AGB and spectral information, while too large 
window-size filter can create too much smoothing of the textural variation [13,14]. With this in mind, 
the results obtained in this study can be used as reference data in future C-stock estimations or model 
calibrations, as well as in mapping ecosystem services, given that AGB and C-stock are very 
important indicators for climate regulation ecosystem services, whose role extends beyond the carbon 
sequestration and also includes “the effect of vegetation on climate via regulation of water vapour and 
temperature and the provision of shade” [15].  

 
Conclusions  
 

ND56 Landsat 8 OLI model was applied in this study as an adaptation of the original ND45 
Landsat ETM+ model in attempt to highlight the potential of remote sensing techniques in forest 
ecosystem research. As a result, a spatially-explicit quantification of the variability of aboveground 
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carbon stock and biomass for the entire forested area of Bulgaria was performed at 30x30 meters 
resolution. The detailed maps show that the AGB volume in the Bulgarian forests ranges from 11.6 to 
605.5 m3 ha-1, and the carbon stock from 2.7 to 201.3 t C ha-1, depending on the type and quality of 
the forests.  It was estimated that the total amount of carbon accumulated in the aboveground part of 
the forests in Bulgaria is 336.8 million tons for a total of 35 317 km2 of forest area. These results are 
comparable to others under similar environmental conditions in Europe. The present study is the first 
attempt for spatially explicit quantification of carbon stocks in aboveground forest biomass at the 
national level for the territory of Bulgaria, based on data from remote sensing.  
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